Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 101 - 125 of 1440 results
101.

Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation.

blue AsLOV2 mESCs Signaling cascade control Cell differentiation
Nat Commun, 30 Oct 2023 DOI: 10.1038/s41467-023-42643-2 Link to full text
Abstract: YAP is a transcriptional regulator that controls pluripotency, cell fate, and proliferation. How cells ensure the selective activation of YAP effector genes is unknown. This knowledge is essential to rationally control cellular decision-making. Here we leverage optogenetics, live-imaging of transcription, and cell fate analysis to understand and control gene activation and cell behavior. We reveal that cells decode the steady-state concentrations and timing of YAP activation to control proliferation, cell fate, and expression of the pluripotency regulators Oct4 and Nanog. While oscillatory YAP inputs induce Oct4 expression and proliferation optimally at frequencies that mimic native dynamics, cellular differentiation requires persistently low YAP levels. We identify the molecular logic of the Oct4 dynamic decoder, which acts through an adaptive change sensor. Our work reveals how YAP levels and dynamics enable multiplexing of information transmission for the regulation of developmental decision-making and establishes a platform for the rational control of these behaviors.
102.

Optogenetics for sensors: On-demand fluorescent labeling of histone epigenetics.

blue AsLOV2 HeLa Epigenetic modification
Biochem Biophys Res Commun, 29 Oct 2023 DOI: 10.1016/j.bbrc.2023.149174 Link to full text
Abstract: Post-translational modifications of histones to a large extent determine the functional state of chromatin loci. Dynamic visualization of histone modifications with genetically encoded fluorescent sensors makes it possible to monitor changes in the epigenetic state of a single living cell. At the same time, the sensors can potentially compete with endogenous factors recognizing these modifications. Thus, prolonged binding of the sensors to chromatin can affect normal epigenetic regulation. Here, we report an optogenetic sensor for live-cell visualization of histone H3 methylated at lysine-9 (H3K9me3) named MPP8-LAMS (MPP8-based light-activated modification sensor). MPP8-LAMS consists of several fusion protein parts (from N- to C-terminus): i) nuclear export signal (NES), ii) far-red fluorescent protein Katushka, iii) H3K9me3-binding reader domain of the human M phase phosphoprotein 8 (MPP8), iv) the light-responsive AsLOV2 domain, which exposes a nuclear localization signal (NLS) upon blue light stimulation. In the dark, due to the NES, MPP8-LAMS is localized in the cytosol. Under blue light illumination, MPP8-LAMS underwent an efficient translocation from cytosol to nucleus, enabling visualization of H3K9me3-enriched loci. Such an on-demand visualization minimizes potential impact on cell physiology as most of the time the sensor is separated from its target. In general, the present work extends the application of optogenetics to the area of advanced use of genetically encoded sensors.
103.

Optogenetic Signaling Activation in Zebrafish Embryos.

blue VfAU1-LOV zebrafish in vivo
J Vis Exp, 27 Oct 2023 DOI: 10.3791/65733 Link to full text
Abstract: Signaling pathways orchestrate fundamental biological processes, including development, regeneration, homeostasis, and disease. Methods to experimentally manipulate signaling are required to understand how signaling is interpreted in these wide-ranging contexts. Molecular optogenetic tools can provide reversible, tunable manipulations of signaling pathway activity with a high degree of spatiotemporal control and have been applied in vitro, ex vivo, and in vivo. These tools couple light-responsive protein domains, such as the blue light homodimerizing light-oxygen-voltage sensing (LOV) domain, with signaling effectors to confer light-dependent experimental control over signaling. This protocol provides practical guidelines for using the LOV-based bone morphogenetic protein (BMP) and Nodal signaling activators bOpto-BMP and bOpto-Nodal in the optically accessible early zebrafish embryo. It describes two control experiments: A quick phenotype assay to determine appropriate experimental conditions, and an immunofluorescence assay to directly assess signaling. Together, these control experiments can help establish a pipeline for using optogenetic tools in early zebrafish embryos. These strategies provide a powerful platform to investigate the roles of signaling in development, health, and physiology.
104.

Turn-On Protein Switches for Controlling Actin Binding in Cells.

blue AsLOV2 HEK293T HeLa MDCK Control of cytoskeleton / cell motility / cell shape
bioRxiv, 26 Oct 2023 DOI: 10.1101/2023.10.26.561921 Link to full text
Abstract: Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP’s influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into new structures to control cell and tissue shape and behavior.
105.

A programmable protease-based protein secretion platform for therapeutic applications.

blue red BphS CRY2/CIB1 Magnets PhyA/FHY1 Hana3A HEK293T hMSCs mouse IPSCs Control of vesicular transport
Nat Chem Biol, 23 Oct 2023 DOI: 10.1038/s41589-023-01433-z Link to full text
Abstract: Cell-based therapies represent potent enabling technologies in biomedical science. However, current genetic control systems for engineered-cell therapies are predominantly based on the transcription or translation of therapeutic outputs. Here we report a protease-based rapid protein secretion system (PASS) that regulates the secretion of pretranslated proteins retained in the endoplasmic reticulum (ER) owing to an ER-retrieval signal. Upon cleavage by inducible proteases, these proteins are secreted. Three PASS variants (chemPASS, antigenPASS and optoPASS) are developed. With chemPASS, we demonstrate the reversal of hyperglycemia in diabetic mice within minutes via drug-induced insulin secretion. AntigenPASS-equipped cells recognize the tumor antigen and secrete granzyme B and perforin, inducing targeted cell apoptosis. Finally, results from mouse models of diabetes, hypertension and inflammatory pain demonstrate light-induced, optoPASS-mediated therapeutic peptide secretion within minutes, conferring anticipated therapeutic benefits. PASS is a flexible platform for rapid delivery of therapeutic proteins that can facilitate the development and adoption of cell-based precision therapies.
106.

Optogenetic STING clustering system through nanobody-fused photoreceptor for innate immune regulation.

blue CRY2clust A-172 HeLa Signaling cascade control
Sens Actuators B Chem, 20 Oct 2023 DOI: 10.1016/j.snb.2023.134822 Link to full text
Abstract: Stimulator of interferon gene (STING) serves as a key mediator for regulating innate immune response. Despite the dynamic process of STING activation, the role of STING clustering in the STING-mediated immune response remains unclear due to the lack of a suitable tool. We developed an innovative optogenetic STING clustering system, OptoSTING, that employs a nanobody-fused photoreceptor-driven technique to achieve light-responsive STING clustering. By optimizing the protein configuration, we identified an optimal OptoSTING system that induced efficient, robust, and reversible clustering of STING upon blue-light illumination. We confirmed that light-induced STING clustering required ER exit to trigger the stimulation of type I interferon response because only cytosolic fragment of OptoSTING (cyt-OptoSTING) enabled to initiate immune response, not full-length OptoSTING. The precise and temporally controlled clustering by cyt-OptoSTING revealed that STING clustering facilitated the STING signaling pathway through puncta formation of IRF3 as downstream effector protein.
107.

Direct investigation of cell contraction signal networks by light-based perturbation methods.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Pflugers Arch, 18 Oct 2023 DOI: 10.1007/s00424-023-02864-2 Link to full text
Abstract: Cell contraction plays an important role in many physiological and pathophysiological processes. This includes functions in skeletal, heart, and smooth muscle cells, which lead to highly coordinated contractions of multicellular assemblies, and functions in non-muscle cells, which are often highly localized in subcellular regions and transient in time. While the regulatory processes that control cell contraction in muscle cells are well understood, much less is known about cell contraction in non-muscle cells. In this review, we focus on the mechanisms that control cell contraction in space and time in non-muscle cells, and how they can be investigated by light-based methods. The review particularly focusses on signal networks and cytoskeletal components that together control subcellular contraction patterns to perform functions on the level of cells and tissues, such as directional migration and multicellular rearrangements during development. Key features of light-based methods that enable highly local and fast perturbations are highlighted, and how experimental strategies can capitalize on these features to uncover causal relationships in the complex signal networks that control cell contraction.
108.

AAV-compatible optogenetic tools for activating endogenous calcium channels in vivo.

blue CRY2/CIB1 CRY2/CRY2 BV-2 HeLa mouse astrocytes primary mouse hippocampal neurons Immediate control of second messengers
Mol Brain, 17 Oct 2023 DOI: 10.1186/s13041-023-01061-7 Link to full text
Abstract: Calcium ions (Ca2+) play pivotal roles in regulating diverse brain functions, including cognition, emotion, locomotion, and learning and memory. These functions are intricately regulated by a variety of Ca2+-dependent cellular processes, encompassing synaptic plasticity, neuro/gliotransmitter release, and gene expression. In our previous work, we developed 'monster OptoSTIM1' (monSTIM1), an improved OptoSTIM1 that selectively activates Ca2+-release-activated Ca2+ (CRAC) channels in the plasma membrane through blue light, allowing precise control over intracellular Ca2+ signaling and specific brain functions. However, the large size of the coding sequence of monSTIM1 poses a limitation for its widespread use, as it exceeds the packaging capacity of adeno-associated virus (AAV). To address this constraint, we have introduced monSTIM1 variants with reduced coding sequence sizes and established AAV-based systems for expressing them in neurons and glial cells in the mouse brain. Upon expression by AAVs, these monSTIM1 variants significantly increased the expression levels of cFos in neurons and astrocytes in the hippocampal CA1 region following non-invasive light illumination. The use of monSTIM1 variants offers a promising avenue for investigating the spatiotemporal roles of Ca2+-mediated cellular activities in various brain functions. Furthermore, this toolkit holds potential as a therapeutic strategy for addressing brain disorders associated with aberrant Ca2+ signaling.
109.

Optogenetics in Alzheimer's Disease: Focus on Astrocytes.

blue red violet Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Antioxidants (Basel), 13 Oct 2023 DOI: 10.3390/antiox12101856 Link to full text
Abstract: Alzheimer's disease (AD) is the most common form of dementia, resulting in disability and mortality. The global incidence of AD is consistently surging. Although numerous therapeutic agents with promising potential have been developed, none have successfully treated AD to date. Consequently, the pursuit of novel methodologies to address neurodegenerative processes in AD remains a paramount endeavor. A particularly promising avenue in this search is optogenetics, enabling the manipulation of neuronal activity. In recent years, research attention has pivoted from neurons to glial cells. This review aims to consider the potential of the optogenetic correction of astrocyte metabolism as a promising strategy for correcting AD-related disorders. The initial segment of the review centers on the role of astrocytes in the genesis of neurodegeneration. Astrocytes have been implicated in several pathological processes associated with AD, encompassing the clearance of β-amyloid, neuroinflammation, excitotoxicity, oxidative stress, and lipid metabolism (along with a critical role in apolipoprotein E function). The effect of astrocyte-neuronal interactions will also be scrutinized. Furthermore, the review delves into a number of studies indicating that changes in cellular calcium (Ca2+) signaling are one of the causes of neurodegeneration. The review's latter section presents insights into the application of various optogenetic tools to manipulate astrocytic function as a means to counteract neurodegenerative changes.
110.

Single Amino Acid Mutation Decouples Photochemistry of the BLUF Domain from the Enzymatic Function of OaPAC and Drives the Enzyme to a Switched-on State.

blue BLUF domains Background
J Mol Biol, 10 Oct 2023 DOI: 10.1016/j.jmb.2023.168312 Link to full text
Abstract: Photoactivated adenylate cyclases (PACs) are light-activated enzymes that combine a BLUF (blue-light using flavin) domain and an adenylate cyclase domain that are able to increase the levels of the important second messenger cAMP (cyclic adenosine monophosphate) upon blue-light excitation. The light-induced changes in the BLUF domain are transduced to the adenylate cyclase domain via a mechanism that has not yet been established. One critical residue in the photoactivation mechanism of BLUF domains, present in the vicinity of the flavin is the glutamine amino acid close to the N5 of the flavin. The role of this residue has been investigated extensively both experimentally and theoretically. However, its role in the activity of the photoactivated adenylate cyclase, OaPAC has never been addressed. In this work, we applied ultrafast transient visible and infrared spectroscopies to study the photochemistry of the Q48E OaPAC mutant. This mutation altered the primary electron transfer process and switched the enzyme into a permanent 'on' state, able to increase the cAMP levels under dark conditions compared to the cAMP levels of the dark-adapted state of the wild-type OaPAC. Differential scanning calorimetry measurements point to a less compact structure for the Q48E OaPAC mutant. The ensemble of these findings provide insight into the important elements in PACs and how their fine tuning may help in the design of optogenetic devices.
111.

Reversible photoregulation of cell-cell adhesions with opto-E-cadherin.

blue AsLOV2 A-431 HeLa MDA-MB-231 NCTC clone 929 Control of cell-cell / cell-material interactions
Nat Commun, 9 Oct 2023 DOI: 10.1038/s41467-023-41932-0 Link to full text
Abstract: E-cadherin-based cell-cell adhesions are dynamically and locally regulated in many essential processes, including embryogenesis, wound healing and tissue organization, with dysregulation manifesting as tumorigenesis and metastasis. However, the lack of tools that would provide control of the high spatiotemporal precision observed with E-cadherin adhesions hampers investigation of the underlying mechanisms. Here, we present an optogenetic tool, opto-E-cadherin, that allows reversible control of E-cadherin-mediated cell-cell adhesions with blue light. With opto-E-cadherin, functionally essential calcium binding is photoregulated such that cells expressing opto-E-cadherin at their surface adhere to each other in the dark but not upon illumination. Consequently, opto-E-cadherin provides remote control over multicellular aggregation, E-cadherin-associated intracellular signalling and F-actin organization in 2D and 3D cell cultures. Opto-E-cadherin also allows switching of multicellular behaviour between single and collective cell migration, as well as of cell invasiveness in vitro and in vivo. Overall, opto-E-cadherin is a powerful optogenetic tool capable of controlling cell-cell adhesions at the molecular, cellular and behavioural level that opens up perspectives for the study of dynamics and spatiotemporal control of E-cadherin in biological processes.
112.

Visual quantification of prostaglandin E2 discharge from a single cell.

blue CRY2clust HeLa MDCK Immediate control of second messengers
Cell Struct Funct, 7 Oct 2023 DOI: 10.1247/csf.23047 Link to full text
Abstract: Calcium transients drive cells to discharge prostaglandin E2 (PGE2). We visualized PGE2-induced protein kinase A (PKA) activation and quantitated PGE2 secreted from a single cell by combining fluorescence microscopy and a simulation model. For this purpose, we first prepared PGE2-producer cells that express either an optogenetic or a chemogenetic calcium channel stimulator: OptoSTIM1 or Gq-DREADD, respectively. Second, we prepared reporter cells expressing the Gs-coupled PGE2 reporter EP2 and the PKA biosensor Booster-PKA, which is based on the principle of Förster resonance energy transfer (FRET). Upon the stimulation-induced triggering of calcium transients, a single producer cell discharges PGE2 to stimulate PKA in the surrounding reporter cells. Due to the flow of the medium, the PKA-activated area exhibited a comet-like smear when HeLa cells were used. In contrast, radial PKA activation was observed when confluent MDCK cells were used, indicating that PGE2 diffusion was restricted to the basolateral space. By fitting the radius of the PKA-activated area to a simulation model based on simple diffusion, we estimated that a single HeLa cell secretes 0.25 fmol PGE2 upon a single calcium transient to activate PKA in more than 1000 neighboring cells. This model also predicts that the PGE2 discharge rate is comparable to the diffusion rate. Thus, our method quantitatively envisions that a single calcium transient affects more than 1000 neighboring cells via PGE2.Key words: prostaglandin E2, imaging, intercellular communication, biosensor, quantification.
113.

Comprehensive Screening of a Light-Inducible Split Cre Recombinase with Domain Insertion Profiling.

blue Magnets E. coli Transgene expression
ACS Synth Biol, 3 Oct 2023 DOI: 10.1021/acssynbio.3c00328 Link to full text
Abstract: Splitting proteins with light- or chemically inducible dimers provides a mechanism for post-translational control of protein function. However, current methods for engineering stimulus-responsive split proteins often require significant protein engineering expertise and the laborious screening of individual constructs. To address this challenge, we use a pooled library approach that enables rapid generation and screening of nearly all possible split protein constructs in parallel, where results can be read out by using sequencing. We perform our method on Cre recombinase with optogenetic dimers as a proof of concept, resulting in comprehensive data on the split sites throughout the protein. To improve the accuracy in predicting split protein behavior, we develop a Bayesian computational approach to contextualize errors inherent to experimental procedures. Overall, our method provides a streamlined approach for achieving inducible post-translational control of a protein of interest.
114.

Light-induced trapping of endogenous proteins reveals spatiotemporal roles of microtubule and kinesin-1 in dendrite patterning of Drosophila sensory neurons.

blue CRY2/CIB1 CRY2/CRY2 CRY2olig Magnets D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
bioRxiv, 2 Oct 2023 DOI: 10.1101/2023.09.30.560303 Link to full text
Abstract: Animal development involves numerous molecular events, whose spatiotemporal properties largely determine the biological outcomes. Conventional methods for studying gene function lack the necessary spatiotemporal resolution for precise dissection of developmental mechanisms. Optogenetic approaches are powerful alternatives, but most existing tools rely on exogenous designer proteins that produce narrow outputs and cannot be applied to diverse or endogenous proteins. To address this limitation, we developed OptoTrap, a light-inducible protein trapping system that allows manipulation of endogenous proteins tagged with GFP or split GFP. This system turns on fast and is reversible in minutes or hours. We generated OptoTrap variants optimized for neurons and epithelial cells and demonstrate effective trapping of endogenous proteins of diverse sizes, subcellular locations, and functions. Furthermore, OptoTrap allowed us to instantly disrupt microtubules and inhibit the kinesin-1 motor in specific dendritic branches of Drosophila sensory neurons. Using OptoTrap, we obtained direct evidence that microtubules support the growth of highly dynamic dendrites. Similarly, targeted manipulation of Kinesin heavy chain revealed differential spatiotemporal requirements of kinesin-1 in the patterning of low- and high-order dendritic branches, suggesting that different cargos are needed for the growth of these branches. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds great promise for studying developmental mechanisms in a wide range of cell types and developmental stages.
115.

Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications.

blue cyan near-infrared red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Int J Mol Sci, 29 Sep 2023 DOI: 10.3390/ijms241914741 Link to full text
Abstract: Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
116.

Local negative feedback of Rac activity at the leading edge underlies a pilot pseudopod-like program for amoeboid cell guidance.

blue iLID HL-60 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
PLoS Biol, 25 Sep 2023 DOI: 10.1371/journal.pbio.3002307 Link to full text
Abstract: To migrate efficiently, neutrophils must polarize their cytoskeletal regulators along a single axis of motion. This polarization process is thought to be mediated through local positive feedback that amplifies leading edge signals and global negative feedback that enables sites of positive feedback to compete for dominance. Though this two-component model efficiently establishes cell polarity, it has potential limitations, including a tendency to "lock" onto a particular direction, limiting the ability of cells to reorient. We use spatially defined optogenetic control of a leading edge organizer (PI3K) to probe how neutrophil-like HL-60 cells balance "decisiveness" needed to polarize in a single direction with the flexibility needed to respond to new cues. Underlying this balancing act is a local Rac inhibition process that destabilizes the leading edge to promote exploration. We show that this local inhibition enables cells to process input signal dynamics, linking front stability and orientation to local temporal increases in input signals.
117.

Allosteric regulation of kinase activity in living cells.

blue cyan red Fluorescent proteins LOV domains Phytochromes Review
bioRxiv, 25 Sep 2023 DOI: 10.1101/2023.07.19.549709 Link to full text
Abstract: The dysregulation of protein kinases is associated with multiple diseases due to the kinases’ involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or “sensors” are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
118.

Spatiotemporal, optogenetic control of gene expression in organoids.

blue CRY2/CIB1 Magnets HEK293T human IPSCs Endogenous gene expression Nucleic acid editing
Nat Methods, 21 Sep 2023 DOI: 10.1038/s41592-023-01986-w Link to full text
Abstract: Organoids derived from stem cells have become an increasingly important tool for studying human development and modeling disease. However, methods are still needed to control and study spatiotemporal patterns of gene expression in organoids. Here we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes in programmable spatiotemporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. Spatial and single-cell transcriptomic analyses showed that this local induction was sufficient to generate stereotypically patterned organoids and revealed new insights into SHH's contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.
119.

CaaX-motif-adjacent residues influence G protein gamma (Gγ) prenylation under suboptimal conditions.

blue iLID HeLa Immediate control of second messengers
J Biol Chem, 20 Sep 2023 DOI: 10.1016/j.jbc.2023.105269 Link to full text
Abstract: Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.
120.

ActuAtor, a Listeria-inspired molecular tool for physical manipulation of intracellular organizations through de novo actin polymerization.

blue iLID U-2 OS Control of cytoskeleton / cell motility / cell shape
Cell Rep, 20 Sep 2023 DOI: 10.1016/j.celrep.2023.113089 Link to full text
Abstract: Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.
121.

Light-activated microtubule-based two-dimensional active nematic.

blue iLID in vitro Extracellular optogenetics
Soft Matter, 13 Sep 2023 DOI: 10.1039/d3sm00270e Link to full text
Abstract: We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.
122.

Photoactivatable base editors for spatiotemporally controlled genome editing in vivo.

blue AsLOV2 CRY2/CIB1 Magnets HEK293T mouse in vivo Transgene expression Nucleic acid editing
Biomaterials, 13 Sep 2023 DOI: 10.1016/j.biomaterials.2023.122328 Link to full text
Abstract: CRISPR-based base editors (BEs) are powerful tools for precise nucleotide substitution in a wide range of organisms, but spatiotemporal control of base editing remains a daunting challenge. Herein, we develop a photoactivatable base editor (Mag-ABE) for spatiotemporally controlled genome editing in vivo for the first time. The base editing activity of Mag-ABE can be activated by blue light for spatiotemporal regulation of both EGFP reporter gene and various endogenous genes editing. Meanwhile, the Mag-ABE prefers to edit A4 and A5 positions rather than to edit A6 position, showing the potential to decrease bystander editing of traditional adenine base editors. After integration with upconversion nanoparticles as a light transducer, the Mag-ABE is further applied for near-infrared (NIR) light-activated base editing of liver in transgenic reporter mice successfully. This study opens a promising way to improve the operability, safety, and precision of base editing.
123.

Diya – a universal light illumination platform for multiwell plate cultures.

blue green CcaS/CcaR CRY2/CIB1 EL222 Magnets VVD E. coli HEK293T HeLa S. cerevisiae Transgene expression
iScience, 9 Sep 2023 DOI: 10.1016/j.isci.2023.107862 Link to full text
Abstract: Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform – Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially-designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
124.

Control of cell retraction and protrusion with a single protein.

blue iLID hTERT RPE-1 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 8 Sep 2023 DOI: 10.1101/2023.09.07.556666 Link to full text
Abstract: The ability of a single protein to trigger different functions is an assumed key feature of cell signaling, yet there are very few examples demonstrating it. Here, using an optogenetic tool to control membrane localization of RhoA nucleotide exchange factors (GEFs), we present a case where the same protein can trigger both protrusion and retraction when recruited to the plasma membrane, polarizing the cell in two opposite directions. We show that the basal concentration of the GEF prior to activation predicts the resulting phenotype. A low concentration leads to retraction, whereas a high concentration triggers protrusion. This unexpected protruding behavior arises from the simultaneous activation of Cdc42 by the GEF and inhibition of RhoA by the PH domain of the GEF at high concentrations. We propose a minimal model that recapitulates the phenotypic switch, and we use its predictions to control the two phenotypes within selected cells by adjusting the frequency of light pulses. Our work exemplifies a unique case of control of antagonist phenotypes by a single protein that switches its function based on its concentration or dynamics of activity. It raises numerous open questions about the link between signaling protein and function, particularly in contexts where proteins are highly overexpressed, as often observed in cancer.
125.

Quantitative insights in tissue growth and morphogenesis with optogenetics.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Phys Biol, 7 Sep 2023 DOI: 10.1088/1478-3975/acf7a1 Link to full text
Abstract: Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.
Submit a new publication to our database